Mechanism of Shear Thickening in Reversibly Cross-linked Supramolecular Polymer Networks.

نویسندگان

  • Donghua Xu
  • Jennifer L Hawk
  • David M Loveless
  • Sung Lan Jeon
  • Stephen L Craig
چکیده

We report here the nonlinear rheological properties of metallo-supramolecular networks formed by the reversible cross-linking of semi-dilute unentangled solutions of poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO). The reversible cross-linkers are bis-Pd(II) or bis-Pt(II) complexes that coordinate to the pyridine functional groups on the PVP. Under steady shear, shear thickening is observed above a critical shear rate, and that critical shear rate is experimentally correlated with the lifetime of the metal-ligand bond. The onset and magnitude of the shear thickening depend on the amount of cross-linkers added. In contrast to the behavior observed in most transient networks, the time scale of network relaxation is found to increase during shear thickening. The primary mechanism of shear thickening is ascribed to the shear-induced transformation of intrachain cross-linking to interchain cross-linking, rather than nonlinear high tension along polymer chains that are stretched beyond the Gaussian range.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Dynamic Processes Contribute to the Complex Steady Shear Behavior of Cross-Linked Supramolecular Networks of Semidilute Entangled Polymer Solutions.

Molecular theories of shear thickening and shear thinning in associative polymer networks are typically united in that they involve a single kinetic parameter that describes the network -- a relaxation time that is related to the lifetime of the associative bonds. Here we report the steady-shear behavior of two structurally identical metallo-supramolecular polymer networks, for which single-rel...

متن کامل

Revealing the Supramolecular Nature of Side-Chain Terpyridine-Functionalized Polymer Networks

Nowadays, finely controlling the mechanical properties of polymeric materials is possible by incorporating supramolecular motifs into their architecture. In this context, the synthesis of a side-chain terpyridine-functionalized poly(2-(dimethylamino)ethyl methacrylate) is reported via reversible addition-fragmentation chain transfer polymerization. By addition of transition metal ions, concentr...

متن کامل

Off-lattice Monte Carlo simulation of supramolecular polymer architectures.

We introduce an efficient, scalable Monte Carlo algorithm to simulate cross-linked architectures of freely jointed and discrete wormlike chains. Bond movement is based on the discrete tractrix construction, which effects conformational changes that exactly preserve fixed-length constraints of all bonds. The algorithm reproduces known end-to-end distance distributions for simple, analytically tr...

متن کامل

Toward a versatile toolbox for cucurbit[n]uril‐based supramolecular hydrogel networks through in situ polymerization

The success of exploiting cucurbit[n]uril (CB[n])-based molecular recognition in self-assembled systems has sparked a tremendous interest in polymer and materials chemistry. In this study, polymerization in the presence of host-guest complexes is applied as a modular synthetic approach toward a diverse set of CB[8]-based supramolecular hydrogels with desirable properties, such as mechanical str...

متن کامل

The role of dilation and confining stresses in shear thickening of dense suspensions

Many densely packed suspensions and colloids exhibit a behavior known as Discontinuous Shear Thickening in which the shear stress jumps dramatically and reversibly as the shear rate is increased. We performed rheometry and video microscopy measurements on a variety of suspensions to determine the mechanism for this behavior. We distinguish Discontinuous Shear Thickening from inertial effects by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Macromolecules

دوره 43 7  شماره 

صفحات  -

تاریخ انتشار 2010